Hello

Категории раздела

Игры [32]
Видеокарты [5]
Материнские платы [3]
Накопители [4]
Процессоры [6]
память [0]
Новости Software [1]

Наш опрос

Оцените мой сайт
Всего ответов: 6

Мини-чат

200

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0

23:28
Надёжность SSD: результаты ресурсных испытаний. ЧАСТЬ 3

Накопители, тестирование которых завершено

ADATA Ultimate SU800

 

Флеш-память с трёхмерной компоновкой медленно, но верно набирает популярность. На рынке стала доступна 3D NAND компании Micron, и в продаже уже можно найти несколько накопителей на её основе. Одно из наиболее интересных предложений такого рода – ADATA Ultimate SU800. Этот твердотельный накопитель, как и Crucial MX300, основывается на 32-слойной TLC-памяти производства Micron, но управляет ей в данном случае контроллер Silicon Motion SM2258, обладающий сильной коррекцией ошибок на основе LDPC ECC. Такое сочетание получилось достаточно выгодным по цене, поэтому вопрос о его надёжности вызывал живой интерес.

ADATA Ultimate SU800 256 Гбайт
Память Micron 32-слойная TLC 3D NAND
Контроллер Silicon Motion SM2258
Алгоритм коррекции ошибок LDPC
Заявленный ресурс 200 Тбайт
Выносливость по результатам тестов 176 Тбайт

И интерес оказался далеко не напрасным. Испытания показали, что надёжность ADATA Ultimate SU800 находится на очень низком уровне. Этот SSD ёмкостью 256 Гбайт не смог даже выдать заявленный производителем ресурс, и отказал заметно раньше обещанного срока, позволив записать лишь 176 Тбайт данных. Из-за столь скромной выносливости ADATA Ultimate SU800 оказался одним из худших SSD в настоящем тестировании, и в разы отстал по этой характеристике от большинства качественных TLC-накопителей.

В чём здесь проблема, с полной уверенностью сказать тяжело. С одной стороны, другие накопители, построенные на той же 32-слойной TLC 3D NAND компании Micron, демонстрируют в испытаниях на порядок лучшую выносливость. С другой – смерть ADATA Ultimate SU800 наступила явно не из-за сбоя контроллера, так как ей предшествовал период лавинообразного роста числа ошибок в флеш-памяти и вполне штатный процесс подмены выходящих из строя блоков NAND на блоки из резерва. Так что скорее всего, объяснение кроется в том, что ADATA закупает у Micron второсортные чипы памяти, а контроллер SMI SM2258 не умеет с ними должным образом обращаться.

Без каких-либо проблем ADATA Ultimate SU800 смог принять порядка 150 Тбайт данных, после чего S.M.A.R.T.-мониторинг начал фиксировать возрастающее число ошибок.

Лучше всего происходящее можно показать графиком числа ошибок при очистке блоков флеш-памяти (построен на основе показаний атрибута B6).

Также о проблемах можно судить по изменению атрибута 05, в котором сохраняется информация о переносе секторов, которые контроллер не смог правильно считать или записать.

Оба графика показывают, что ранняя смерть ADATA Ultimate SU800 была закономерна и неизбежна.

В то же время число перезаписей ячеек флеш-памяти даже к моменту окончания жизненного цикла накопителя оказалось совсем небольшим.

800 циклов перезаписи – это очень низкий ресурс даже для трёхбитовых ячеек флеш-памяти. Однако есть одна тонкость. В ADATA Ultimate SU800 алгоритмы SLC-кеширования работают динамически. При записи в SLC-режиме используется вся доступная флеш-память, и её перевод в TLC-режим происходит только тогда, когда заканчивается свободное место. Это значит, что к 800 циклам перезаписи в TLC-режиме прибавляется и значительно более высокое число циклов перезаписи ячеек в SLC-режиме.

Дополнительные 30 тысяч циклов перепрограммирования – это весьма солидная нагрузка даже по меркам настоящей SLC-памяти. Поэтому возможно, что именно выбранная инженерами ADATA схема SLC-кеширования стала причиной столь низкой выносливости Ultimate SU800. Впрочем, как бы то ни было, если вы подыскиваете накопитель, на который планируете накладывать ощутимые нагрузки по записи данных, ADATA Ultimate SU800 рекомендуется обходить стороной.

Crucial MX300

Crucial MX300 – весьма интересный для тестирования живучести экземпляр. В нём применение нашла производимая Micron и разработанная альянсом IMFT трёхмерная 32-слойная TLC-память, которая на данный момент встречается всё чаще и чаще, особенно в недорогих моделях SSD. И надо сказать, что мы нисколько не пожалели, что «связались» с тестами этой модели. Благодаря ей мы теперь знаем, что и 3D TLC NAND компании Micron может не уступать в выносливости привычной планарной MLC-памяти. Представьте себе, тестирование Crucial MX300 заняло 300 суток, и всё это время на накопитель почти непрерывно писались данные.

Crucial MX300 275 Гбайт
Память Micron 32-слойная TLC 3D NAND
Контроллер Marvell 88SS1074
Алгоритм коррекции ошибок LDPC
Заявленный ресурс 80 Тбайт
Выносливость по результатам тестов 2 659 Тбайт

Общий объём записей, который смог перенести Crucial MX300, в конечном итоге составил 2 659 Тбайт, что удивительным образом пересекается с практической выносливостью участвовавшего в нашем тесте Samsung 850 EVO. Иными словами, пока 3D TLC NAND оставляет после себя исключительно благоприятное впечатление.

Положительное впечатление Crucial MX300 оставил после себя не только из-за высокого продемонстрированного результата. Он оказался и одним из немногих накопителей, который сообщает о себе в S.M.A.R.T. детальную и содержательную информацию. Благодаря этому кончина этого SSD не оказалась неприятным сюрпризом. О том, что его жизненный цикл подходит к концу, было ясно из параметров мониторинга, которые сообщают и об ошибках, и о задействовании подменных блоков, и о размере оставшегося резерва.

Например, при приближении Crucial MX300 к полной выработке ресурса состояние его S.M.A.R.T. выглядел следующим образом.

Наглядно иллюстрируют состояние флеш-памяти сразу несколько параметров.

Во-первых, нарастающее число ошибок чтения из флеш-памяти, которое хранится в переменной 0x01 (Raw Read Error Rate).

Первые ошибки чтения из массива флеш-памяти стали возникать после записи на накопитель примерно 1,7 Пбайт данных. Затем их число стало увеличиваться по экспоненте. Однако нужно понимать, что здесь речь идёт о внутренних ошибках накопителя. Целостность хранимых данных при этом не нарушается, так как эти ошибки устраняются контроллером.

Во-вторых, хорошим показателем состояния флеш-памяти накопителя выступает переменная 0x05 (Reallocated NAND Blocks). В ней аккумулируется число блоков, которые были перенесены в резервную область.

Первый случай обращения контроллера к резерву зафиксирован после записи 1,7 Пбайт данных, а после записи более 2,0 Пбайт, резерв стал востребован практически постоянно.

Стоит заметить, что нормализованное состояние этой переменной отлично подсказывает тот момент, когда SSD собирается окончательно отказать.

В самом конце теста нормализованное значение Reallocated NAND Blocks упало до нуля.

В-третьих, наблюдать имеет смысл и за параметром 0xB4 (Unused Reserve NAND Count), где отражается доступный запас резервных блоков.

Из имеющихся изначально 1246 блоков к окончанию жизненного цикла SSD остались невостребованными только 209 блоков.

А вот переменная 0xCA (Percent Lifetime Used), в которой по идее должен отображаться процентный показатель выработки ресурса, ничего осмысленного не сообщает. Проблема в том, что из-за каких-то ошибок в прошивке эта переменная периодически обнуляется. Поэтому за время тестирования она начертила весьма забавный график.

Собственно, такое её путешествие вплотную связано с тем, что накопитель неправильно считает циклы перезаписи флеш-памяти. Параметр 0xAD (Average Block-Erase Count), который должен их фиксировать, тоже периодически сбрасывается.

Впрочем, благодаря непрерывному наблюдению за этой переменной, мы смогли восстановить её правильное значение к концу жизни Crucial MX300.

Как видно по приведённому графику, число циклов перезаписи 3D TLC NAND в составе Crucial MX300 за всё время тестирования превысило 10 тысяч. И это – весьма примечательный показатель, ведь изначально Micron обещает для своей памяти ресурс лишь 1500 циклов перезаписи. То есть, в Crucial MX300 устанавливаются весьма качественные чипы, которые оказываются способны переработать расчётную выносливость в несколько раз.

В то же время, в Samsung 850 EVO трёхмерная память с трёхбитовыми ячейками смогла выдержать 15 тысяч циклов программирования-стирания. То есть, Crucial MX300 показал высокую надёжность не только благодаря своей памяти, но и за счёт внутренних алгоритмов, которые смогли обеспечить невысокий показатель усиления записи.

GOODRAM Iridium Pro

Мы давно хотели посмотреть на ресурс типового варианта платформы Phison S10, укомплектованной планарной MLC-памятью. Начинка данного типа часто встречается среди продуктов производителей второго-третьего эшелона, которые обычно позиционируют накопители на её основе в качестве флагманских продуктов. Поэтому многим потребителям SSD с планарной MLC NAND, построенные на контроллере Phison S10, кажутся очень привлекательными, ведь для них действительно обещается соблазнительное сочетание цены, производительности и надёжности.

В наших тестах выносливости принял участие накопитель польского производителя GOODRAM Iridium Pro. Однако большинство накопителей, использующих контроллер Phison S10, производятся самим разработчиком контроллеров, и поэтому малоотличимы друг от друга. С тем же успехом вместо GOODRAM Iridium Pro можно было взять Corsair Force LS, Patriot Ignite, PNY CS2211 XLR8, Smartbuy Ignition 4 и проч. – результат, скорее всего, был бы точно тем же.

GOODRAM Iridium Pro 240 Гбайт
Память Toshiba 15-нм MLC NAND
Контроллер Phison PS3110-S10
Алгоритм коррекции ошибок BCH
Заявленный ресурс н/д
Выносливость по результатам тестов 1067 Тбайт

Компания GOODRAM, рекламируя свой Iridium Pro, напирает на его повышенную надёжность. Для него не установлено никаких лимитов по объёму разрешённой записи, а срок гарантии составляет пять лет – как у наиболее продвинутых потребительских SSD. Однако в то же время практическое испытание выносливости не позволило получить сколь-нибудь выдающийся результат. На GOODRAM Iridium Pro, который базируется на честной Toshiba 15-нм MLC NAND, записать в общей сложности удалось лишь 1067 Тбайт.

И это вряд ли можно считать хорошим показателем. Да, среднестатистические SSD с TLC-памятью демонстрируют в тестах несколько меньший реальный ресурс. Но вместе с тем по перенесённому объёму записи Iridium Pro не смог превзойти ни лучшие SSD на TLC памяти, ни Samsung 850 EVO, в котором применяется 3D TLC V-NAND. Иными словами, комбинация из MLC NAND компании Toshiba и контроллера Phison S10 никакой особенно высокой выносливости не обеспечивает.

Если проследить за изменением параметра S.M.A.R.T. E7 (SSD Life Left), становится понятно, что контроллер в GOODRAM Iridium Pro предполагает, что используемая MLC рассчитана на 3000 циклов перезаписи. И он недалёк от истины. После того, как ячейки MLC NAND оказываются в среднем перезаписаны более 3600-3700 раз, в массиве флеш-памяти начинают появляться проблемы различного характера.

До возникновения первых ошибок на GOODRAM Iridium Pro удалось записать 858 Тбайт данных, после чего число проблемных блоков страниц флеш-памяти стало нарастать лавинообразно. Исходя из значений переменной S.M.A.R.T. AA (Bad Block Count), число образовавшихся в процессе использования дефектных блоков достигло к концу жизненного цикла 94. Все они были переназначены за счёт подменного фонда.

Имеющийся резерв ячеек при этом был задействован не полностью, а лишь на 64 процента – об этом говорит нормированное значение того же параметра.

Всего же в MLC-накопителях на базе контроллера Phison S10 предусматривается 150 запасных блоков. Поэтому в конце тестирования отказ GOODRAM Iridium Pro произошёл по не вполне привычному сценарию. Накопитель в целом сохранил свою формальную работоспособность, однако записанные на нём файлы стали читаться с ошибками – перестали сходиться рассчитываемые нами в процессе тестирования контрольные суммы. Это нашло отражение и в резком изменении параметра S.M.A.R.T. 01 (Read Error Rate), который одномоментно вырос до космических величин. Этот параметр указывает на число ошибок чтения, и его внезапный выброс вполне закономерен.

Стоит заметить что такая же, как в GOODRAM Iridium Pro, двухбитовая память компании Toshiba в накопителе Plextor M8Pe смогла продемонстрировать вдвое больший ресурс. Однако в этом нет никакого противоречия. Во-первых, Plextor является для Toshiba более близким и более важным партнёром, поэтому для него доступны более качественные чипы. Во-вторых, на продолжительность жизни памяти оказывает влияние и контроллер. Чип Phison S10 не предлагает никаких продвинутых средств исправления ошибок и цифровой обработки сигналов, а использует лишь обычные BCH-контрольные суммы. Всё это означает, что от предлагаемых различными небольшими фирмами накопителей, построенных по формуле «Phison S10 + MLC NAND», никакой особенно выдающейся выносливости ждать не следует.

KingDian S280

Накопитель локального китайского производителя KingDian был включён в тестирование главным образом из любопытства, какие характеристики надёжности может предложить доступный на интернет-площадках вроде AliExpress ультрабюджетный SSD с флеш-памятью неясного происхождения. Тем более что в тестах производительности он показал себя не хуже дешёвых предложений именитых фирм.

KingDian S280 240 Гбайт
Память Toshiba (?) 15-нм TLC NAND
Контроллер Silicon Motion SM2256
Алгоритм коррекции ошибок LDPC
Заявленный ресурс Н/д
Выносливость по результатам тестов 664 Тбайт

Несмотря на то, что KingDian S280 – это весьма сомнительное предложение как по начинке, так и по своему происхождению, выносливость этот накопитель продемонстрировал весьма достойную. Безусловно, во многом помог этому контроллер Silicon Motion SM2256, на который не поскупился китайский производитель. К счастью, этот контроллер поддерживает продвинутые методы коррекции ошибок, что и позволило KingDian S280 пережить более 600 Тбайт перезаписей.

При этом нужно отметить присущий этой модели функциональный и содержательный мониторинг S.M.A.R.T. Местами он не очень понятен, но параметры 05 (Reallocated Sectors Count), A9 (Percentage Lifetime Remaining) и C4 (Reallocation Event Count) позволяют неплохо воссоздавать картину происходящего с массивом флеш-памяти.

Самая простая для понимания характеристика – это оставшийся ресурс, процентное выражение которого описывается атрибутом A9 (Percentage Lifetime Remaining). Однако на самом деле это значение высчитывается арифметически исходя из того, что массив флеш-памяти рассчитан на 1000 циклов перезаписи.

Поэтому жизнеспособность по мнению самого накопителя упала до нуля при перезаписи лишь 235 Тбайт данных. На самом же деле установленная в нашем экземпляре SSD память смогла протянуть гораздо больше. Среднее число перезаписей ячеек к моменту выхода накопителя из строя достигло 2800 раз.

Надо сказать, что такое финальное число перезаписей TLC-памяти существенно ниже, чем в накопителях ведущих производителей. И это косвенно указывает на то, что память в KingDian S280 использована действительно далеко не самая лучшая. Например, в Plextor M7V массив TLC-памяти до отказа накопителя удалось перезаписать 4800 раз, а в Samsung 750 EVO – почти 8000 раз.

Если же говорить не о предельной выносливости KingDian S280, а о том, до каких пор его массив флеш-памяти работает без сбоев, то посмотреть стоит на значение параметра C4 (Reallocation Event Count), в котором аккумулируется число ошибок, потребовавших переносить данные на новое место из имеющегося резерва.

Лавинообразное нарастание проблем с памятью наблюдается после записи 650 Тбайт данных, а до этого момента состояние накопителя опасений вообще не вызывает. Аналогичную картину можно получить, если посмотреть на изменение параметра 05 (Reallocated Sectors Count), в котором отображается число выведенных из обращения секторов.

Из последних двух графиков нетрудно сделать вывод о том, что начинать активно беспокоиться о скорой кончине KingDian S280 стоит после того, как у него появляются первые ошибки. С момента задействования первого сектора из резерва и до того, как накопитель становится полностью негодным, проходит очень небольшой промежуток времени. При этом после окончания жизненного цикла KingDian S280, как и большинство других потребительских SSD, просто пропадает из системы и перестаёт нормально функционировать. Впрочем, в нашем случае он умер не полностью: накопитель определялся в BIOS, но как SSD ёмкостью 100 Мбайт, что в практическом плане совершенно бесполезно.

И ещё одно интересное наблюдение. Несмотря на то, что флеш-память, установленная в KingDian S280, показала худшую работоспособность по сравнению с памятью в других TLC-накопителях, продолжительность жизни этой модели оказалась вполне «на уровне». Обеспечить такой результат смог контроллер Silicon Motion SM2256, благодаря которому коэффициент усиления записи остаётся близким к единице, чему помогает имеющаяся в накопителе технология SLC-кеширования.

Вывод же из всего этого напрашивается такой: современные контроллеры позволяют получать сравнительно неплохие по надёжности SSD даже в том случае, если в них использована не слишком качественная память. И KingDian S280 – это отличная иллюстрация этого факта.

Kingston HyperX Savage

Добавить в тестирование Kingston HyperX Savage нас попросили читатели. Его испытания были интересны как минимум по двум причинам. Во-первых, это – достаточно популярная в настоящее время модель на базе MLC-памяти. Во-вторых, по аппаратной конфигурации, объединяющей контроллер Phison S10 и планарную 15-нм MLC-память Toshiba, этот накопитель аналогичен целому классу устройств, которые активно продаются под различными торговыми марками. Правда нужно учитывать, что компания Kingston при этом использует схемотехнический дизайн и прошивку, которые отличаются от эталонной версии.

Kingston HyperX Savage 240 Гбайт
Память Toshiba 15-нм MLC NAND
Контроллер Phison PS3110-S10
Алгоритм коррекции ошибок BCH
Заявленный ресурс 306 Тбайт
Выносливость по результатам теста 3 562 Тбайт

Результаты тестирования оказались не совсем типичными: они позволяют построить предположение о том, что Kingston использует в своём SSD память лучшего качества по сравнению с другими накопителями на той же аппаратной платформе. Например, эталонный GOODRAM Iridium PRO 240 Гбайт, построенный по формуле «Phison S10 + MLC NAND», смог перенести лишь порядка 1 Пбайт перезаписей. Kingston HyperX Savage 240 Гбайт в этом плане оказался гораздо лучше: он смог прослужить более чем в три раза дольше и обслужить 3 562 Тбайт перезаписей. И кстати, это – весьма впечатляющее значение. Накопители, которые способны на большее, среди потребительских моделей встречаются нечасто.

В финале накопитель повёл себя совершенно типично: он просто пропал из системы и перестал определяться даже в BIOS материнской платы. Поэтому конечный скриншот S.M.A.R.T.-диагностики был снят не в самом конце жизни SSD, а немного до этого.

Тем не менее, накопитель умер достаточно предсказуемо, и если следить за телеметрией, то Kingston HyperX Savage вряд ли преподнесёт неприятный сюрприз своим внезапным отказом.

Наблюдать за состоянием Kingston HyperX Savage лучше всего по количеству блоков, переназначенных за счёт резервной области. Это число доступно в переменными S.M.A.R.T. 0x05 или 0xC4 (Reallocation Event Count).

Как следует из приведённого графика, резерв был распечатан накопителем после записи 2,5 Пбайт данных, а к концу жизненного цикла число дефектных блоков достигло 362.

В переменной 0xAA также в закодированном виде ведётся их учёт, но эта переменная в первую очередь представляет интерес своим нормализованным значением, по которому можно судить о том, как контроллер SSD оценивает состояние массива флеш-памяти.

До нуля этот параметр упал после переноса в резервную область 62 блоков. Записано на SSD на этот момент было уже 3000 Тбайт данных.

А вот переменная 0xE7 (SSD Life Left), в которой по идее отображается информация об оставшемся ресурсе, обнулилась очень быстро – после записи 747 Тбайт данных.

Странно в этом ничего нет. Данная характеристика рассчитывается по числу циклов перезаписи ячеек флеш-памяти. Как только в процессе использования SSD они были перепрограммированы 3 тысячи раз, а это – типичное значение ресурса планарной MLC­­-памяти, значение этой переменной упало до нуля.

В целом же 15-нм MLC-память компании Toshiba, которая трудится в Kingston HyperX Savage, оказалась способна на значительно большее. Реальное число пройденных ей циклов программирования-стирания сохраняется в переменной 0xF4 (Average Erase Count), и под конец испытаний её значение достигло 14 с лишним тысяч.

Как бы то ни было, Kingston HyperX Savage оказался в числе качественных и надёжных потребительских SSD, а установленная в нём планарная MLC по своей выносливости практически не уступает 3D TLC NAND компании Samsung.

OCZ Trion 150 (TR150)

Участие в тестировании выносливости OCZ Trion 150 обуславливается тем, что, с одной стороны, это –достаточно популярный массовый SSD на базе TLC-памяти, а с другой – он базируется на не слишком жалуемом нами контроллере Phison S10, который не обладает современными средствами исправления ошибок.

OCZ Trion 150 240 Гбайт
Память Toshiba 15-нм TLC NAND
Контроллер Phison PS3110-S10
Алгоритм коррекции ошибок BCH
Заявленный ресурс 60 Тбайт
Выносливость по результатам тестов 734 Тбайт

Несмотря на то, что контроллер Phison S10 для коррекции ошибок флеш-памяти использует простой алгоритм BCH EСС, OCZ Trion 150 смог продемонстрировать достаточно хороший результат. На протяжении жизненного цикла мы смогли перезаписать на него в общей сложности 734 Тбайт данных, что на самом деле не намного меньше практического ресурса накопителей на базе планарной TLC-памяти, основанных на контроллерах с поддержкой LDPC. Связано это скорее всего с тем, что Toshiba, владеющая торговой маркой OCZ, отбирает для собственных накопителей более качественную память, которая оказывается способна перенести на практике порядка 3 тысяч циклов перезаписи.

При этом OCZ Trion 150 оказался любопытным продуктом не только из-за своей выносливости. Неожиданным оказалось поведение этого SSD при окончании жизненного цикла. В отличие от прочих протестированных накопителей Trion 150 не сразу безвозвратно «выпал» из системы во время работы, превратившись в бесполезный «кирпич». Вместо этого он переключился в режим «только для чтения», что нашло отражение в изменении атрибута S.M.A.R.T. A7 (SSD Protect Mode), который вышел из обычного нулевого состояния и принял значение 3. В таком состоянии прочитать данные с SSD было возможно, но любая запись блокировалась контроллером.

Однако не стоит думать, что данные, которые хранились на OCZ Trion 150 остаются доступны даже после окончания его жизненного цикла. Как выяснилось, режим «только для чтения» действует только до первой перезагрузки. После первого же выключения израсходовавший свой ресурс SSD безвозвратно пропадает из системы и перестаёт определяться как операционной системой, так и BIOS материнской платы. Иными словами, за параметром S.M.A.R.T. A7 нужно пристально следить, и, если он становится отличным от нуля, данные, хранящиеся на накопителе, надо срочно спасать. Причём, не прибегая к перезагрузкам.

Немало претензий во время ресурсных испытаний OCZ Trion 150 вызвала содержательность его S.M.A.R.T.-мониторинга. Сведения, которые сообщает о себе накопитель, весьма скупы: в S.M.A.R.T. не содержится ровным счётом никакой информации о состоянии массива флеш-памяти. Среди доступных атрибутов нет ни переменных, говорящих о числе перезаписей ячеек флеш-памяти, ни данных о возникающих ошибках. Поэтому судить о том, на какой стадии жизненного цикла находится SSD, практически невозможно.

Сколь-нибудь полезные сведения сообщаются лишь нормализованным параметром AD (Erase Count), по которому можно судить о степени износа флеш-памяти, и нормализованным атрибутом A9 (Bad Block Count), который играет роль триггера, указывающего на скорую кончину SSD. У нашего тестового экземпляра OCZ Trion 150 эти величины в процессе тестирования менялись следующим образом.

По параметру Erase Count о жизнеспособности накопителя строит предположения фирменная сервисная утилита Toshiba (OCZ) SSD Toolbox. До тех пор, пока значение этого атрибута не упадёт до нуля, процентная оценка оставшегося ресурса считается равным его значению, разделенному на два. Однако более надёжно о приближающейся смерти позволяет судить переменная Bad Block Count. Её падение до нуля – верный признак того, что жить накопителю осталось недолго.

Plextor M7V

Plextor M7V был включён в тестирование, так как это TLC-накопитель с одним из самых высоких заявленных ресурсов. При этом в нём используется обычная TLC-флеш-память Toshiba, производимая по тонкому 15-нм техпроцессу. Живучесть же обеспечивается контроллером, ведь в Plextor M7V применён продвинутый чип Marvell 88SS1074, имеющий на вооружении полный набор современных алгоритмов коррекции ошибок.

Plextor M7V 256 Гбайт
Память Toshiba 15-нм TLC NAND
Контроллер Marvell 88SS1074
Алгоритм коррекции ошибок LDPC
Заявленный ресурс 160 Тбайт
Выносливость по результатам тестов 1137 Тбайт

Честно говоря, Plextor M7V немало удивил своей надёжностью. В процессе тестирования нам удалось записать на него более 1 Пбайт данных, что более чем вшестеро превышает заявленный производителем ресурс. Отличное подтверждение того факта, что качественные современные TLC-накопители гораздо надёжнее, чем кажутся на первый взгляд.

Надо сказать, что при этом до последнего S.M.A.R.T. Plextor M7V почти не показывал ошибок. Число сбойных блоков держалось на единичных значения, так что можно сказать, что умер он практически внезапно. Ниже приведён один из скриншотов CrystalDiskInfo, снятый незадолго перед кончиной этого накопителя. Как видите, никакого значительно числа нарастающих ошибок он не отображает.

К сожалению, это скорее плохо, чем хорошо. Получается, что заранее предсказать выход Plextor M7V из строя достаточно проблематично. В один прекрасный момент накопитель попросту перестанет отзываться на какие-либо внешние воздействия, что и будет означать окончание его жизненного цикла. Именно так и произошло в нашем случае. SSD попросту пропал из системы во время работы, и перестал определяться при последующих перезагрузках.

Любопытно, что атрибут 05 (Reallocated Sector Count) до самого конца сохранял нулевые значения. И это значит, что многие из параметров S.M.A.R.T. у Plextor M7V попросту показывают некорректные величины. Судя по нашему опыту, ориентироваться можно лишь на некоторые параметры: AA (Grown Bad Blocks), B3 (Used Reserved Block Count) и C4 (Reallocation Event Counts). Они хоть как-то предупреждают о приближающейся кончине SSD. В нашем случае все эти переменные содержали одинаковые значения, которые к концу жизни достигли 8.

В виде графика это выглядит так.

Получается, что как только S.M.A.R.T. у Plextor M7V начинает показывать хоть какие-то проблемы, это признак того, что накопитель одной уже сделал первый шаг в сторону своей смерти. В нашем случае этот шаг был совершён после записи на него примерно 1000 Тбайт информации.

Также достоверная информация отображается в атрибуте AD (Average Program/Erase Count). Из него можно почерпнуть сведения о том, сколько раз в среднем были перезаписаны ячейки TLC NAND.

Под конец жизненного цикла среднее число перезаписей дошло до 4800. Это, кстати, далеко не рекорд. Планарная TLC-память Samsung, например, показала в наших практических испытаниях вдвое более высокий ресурс.

Зато Plextor M7V может похвастать близким к единице коэффициентом усиления записи, в чём ему, вне всяких сомнений, хорошо помогает технология SLC-кеширования PlexNitro.

В итоге, несмотря на недостатки в выдаче диагностической информации, Plextor M7V подтвердил репутацию TLC-накопителя с феноменально высокой надёжностью.

Plextor M8Pe

Постепенно в наше сводное тестирование надежности различных накопителей стали проникать модели, подключающиеся к шине PCI Express и работающие по протоколу NVMe. Один из таких накопителей – популярный высокопроизводительный SSD Plextor M8Pe. Продукция Plextor отлично зарекомендовала себя с точки зрения максимального ресурса, а M8Pe – это модель верхнего уровня, которая построена на планарной MLC-памяти Toshiba. Значит, что по всем признакам она должна быть не только быстрой, но и надёжной.

Plextor M8Pe 256 Гбайт
Память Toshiba 15-нм MLC NAND
Контроллер Marvell 88SS1093
Алгоритм коррекции ошибок LDPC
Заявленный ресурс 384 Тбайт
Выносливость по результатам тестов 1 785 Тбайт

Однако реальность оказалась не столь радужной. Нет, никаких претензий к надёжности Plextor M8Pe у нас нет. Он смог проработать гораздо больше, чем обещал для него производитель и показал очень неплохой результат. Но вот рекордов выносливости поставить ему не удалось. Объём перезаписей до того момента, как у накопителя стали возникать критические проблемы, составил 1 785 Тбайт. Это значительно больше, чем удаётся записать на SSD, в которых применяется планарная TLC NAND, но заметно меньше практической наработки основанного на трёхмерной TLC-памяти Samsung 850 EVO, который в процессе нашего тестирования перенёс почти 3 Пбайт перезаписей.

При этом Plextor M8Pe удивил несколько нетипичным окончанием своего жизненного цикла. На тот момент, когда мы приняли решение вывести его из теста, работоспособности, если судить по формальным признакам, он не утратил. Накопитель продолжал нормально детектироваться в BIOS системной платы и в операционной системе, на него можно было продолжать записывать файлы. Однако чтения файлов происходили с ошибками. Причём, это касалось как тех файлов, которые были сохранены на накопителе в самом начале теста, так и файлов, которые записывались на него в процессе создания нагрузки. Иными словами, к концу тестирования флеш-память в M8Pe попросту утратила свою способность сохранять информацию в неизменном виде.

Нашло отражение это и в S.M.A.R.T.-статистике. Её финальное состояние выглядит следующим образом.

Атрибут 0x0E (Media and Data Integrity Errors), в котором контроллер накапливает информацию о неисправимых ошибках (например, ошибках ECC, CRC и проч.) вышел из нулевого состояния и стал показывать огромное и постоянно нарастающее число проблем. Однако, что странно, в атрибуте 0x01 (Critical Warning) никакие флаги, указывающие на критическое состоянии SSD, подняты не были.

Параметр Media and Data Integrity Errors вышел из ненулевого состояния незадолго до того момента, как проблемы с чтением пробились из недр логики накопителя наружу и распространились на файловую систему. 1 744 Тбайт на Plextor M8Pe было сохранено без каких бы то ни было намёков на приближающееся окончание жизненного цикла. Это хорошо видно по графику изменения параметра Media and Data Integrity Errors.

К сожалению, в данном случае S.M.A.R.T.-мониторинг не дал никакой возможности заранее предсказать приближающуюся кончину накопителя. Даже атрибут 0x03 (Available Spare), который должен отображать долю неиспользуемых подменных страниц флеш-памяти, сохранил к концу жизни M8Pe первоначальное 100-процентное значение.

Ориентироваться можно было разве только на переменную 0x05 (Percentage Used), в которой отображается заложенная производителем оценка ресурса накопителя.

Как показывает график, к концу теста «план» по выработке ресурса оказался перевыполнен в два с половиной раза. 100-процентное же значение параметра Percentage Used было пройдено ещё при записи 720 Тбайт информации.

Впрочем, расчёт значения параметра Percentage Used делается не на основании каких-то данных о реальном состоянии флеш-памяти, а из расчёта, что она способна перенести до 3 тысяч циклов перезаписи.

К концу же теста число циклов программирования/стирания достигло 7900.

Подытоживая полученный результат, Plextor M8Pe стоит признать накопителем с хорошим, но не лидирующим уровнем выносливости. Используя MLC NAND компании Toshiba, он гарантирует заведомо лучшую надёжность, чем продукты на базе TLC NAND, однако на рынке есть варианты, которые могут предложить и явно лучшую выносливость.

Plextor S2C

Данный недорогой накопитель компании Plextor имеет очень оригинальную начинку. В нём используется новый контроллер SMI SM2258 и планарная TLC-память производства SK Hynix. Аналогов у этого SSD нет, но другой TLC-накопитель Plextor, M7V, смог порадовать нас своей относительно высокой выносливостью. Тем не менее, Plextor S2C оказался не столь удачной в части выносливости моделью даже несмотря на то, что в нём реализована коррекция ошибок на основе LDPC-кодов. В конечном итоге нам удалось записать на тестовый образец Plextor S2C 256 Гбайт только 573 Тбайт данных, что несколько ниже среднего результата для современных TLC-накопителей.

Plextor S2C 256 Гбайт
Память SK Hynix 16-нм TLC NAND
Контроллер Silicon Motion SM2258
Алгоритм коррекции ошибок LDPC
Заявленный ресурс 150 Тбайт
Выносливость по результатам тестов 573 Тбайт

Впрочем, надёжность Plextor S2C всё равно оказалась на вполне приемлемом уровне. В конечном итоге мы записали на него более чем в три раза больше заявленного производителем ресурса, что позволяет поставить S2C по параметрам выносливости в один ряд с популярными моделями класса Samsung 750 EVO.

На момент окончания жизненного цикла Plextor S2C его слепок S.M.A.R.T. выглядел следующим образом.

Телеметрия, которой делится Plextor S2C, оказывается достаточно полезна. В ней в параметрах AC (Total Erase Fail Count), B0 (Worst Case Erase Fail Count) и B6 (Total Erase Fail Count) аккумулируются сведения об ошибках, возникающих при очистке блоков флеш-памяти, по числу которых можно следить за здоровьем накопителя.

До того момента, как у Plextor S2C начали возникать первые проблемы, на него было записано 500 Тбайт данных, и до этих пор о состоянии массива флеш-памяти можно было не беспокоиться. Затем же количество ошибок начало нарастать экспоненциально, что прямо говорит о том, что флеш-память с нагрузкой справляться уже перестала.

Любопытно, что число циклов стирания-записи, которые смогла перенести применённая в Plextor S2C TLC-память Hynix, оказалось сравнительно небольшим. Две тысячи циклов перепрограммирования, похоже, для такой памяти являются пределом, даже несмотря на применённую в контроллере SMI SM2258 сильную коррекцию ошибок на основе LDPC-кодов. В плане же практического ресурса планарная TLC NAND производства Toshiba или Samsung смотрится куда лучше. И это значит, что накопители с такой памятью и контроллерами без поддержки LDPC могут оказаться недостаточно надёжными.

Фактически, сравнительно высокую наработку Plextor S2C показал во многом благодаря контроллеру и прошивке, которые смогли обеспечить сравнительно невысокий коэффициент усиления записи, который к концу тестирования приблизился к единице.

Стоит отметить, что усиление записи инженеры Plextor смогли понизить только в прошивке версии 1.03. Именно её появление обусловило падение соответствующего коэффициента, которое хорошо прослеживается на начальной части графика. Это явно показывает, что не стоит пренебрегать обновлением микропрограммы SSD: новые версии могут повысить в том числе и надёжность.

Plextor S3C

Накопитель Plextor S3C представляет собой дальнейшее развитие модели S2C в сторону удешевления. По сравнению с S2C в нём используется видоизменённая аппаратная платформа. С одной стороны, это – новый контроллер SMI SM2254, а с другой – новая планарная TLC NAND компании SK Hynix, которая выпускается по ещё более тонкому 14-нм техпроцессу. В результате, Plextor S3C стал накопителем на базе планарной TLC-памяти с самыми миниатюрными на данный момент ячейками. А это значит, что от такой модели не стоит ожидать высокой выносливости, что находит отражение и в заявленном производителем ресурсе, который для S3C установлен на сравнительно небольшом уровне.

Plextor S3C 256 Гбайт
Память SK Hynix 14-нм TLC NAND
Контроллер Silicon Motion SM2254
Алгоритм коррекции ошибок LDPC
Заявленный ресурс 70 Тбайт
Выносливость по результатам тестов 192 Тбайт

Практические испытания надёжности Plextor S3C показали, что беспокойство о его реальной выносливости было не напрасным. Максимальный объём информации, который оказалось возможным записать на этот SSD, составил всего лишь 192 Тбайт данных, что является одним из худших результатов среди всех накопителей, побывавших в нашем тестировании.

Выявленный в тестах невысокий ресурс S3C дополнительно усугубился и тем, каким образом этот накопитель вышел из строя. До самого конца жизненного цикла используемой флеш-памяти S.M.A.R.T.-диагностика Plextor S3C приближение проблем никоим образом не отображала. Даже у полностью изношенного накопителя, уже неспособного к нормальной работе, индикаторы числа ошибок в массиве флеш-памяти так и остались на нулевых показателях. В самом же конце своей жизни Plextor S3C просто стал выборочно отказываться читать сохраняемые на нём файлы, что в условиях практической эксплуатации означало бы утрату пользовательских данных.

На финальном скриншоте CrystalDiskInfo, который был снят в самом конце теста Plextor S3C, уже после того, как накопитель стал неспособен хранить записываемые на него файлы, все переменные S.M.A.R.T., отражающие состояние флеш памяти, ничего подозрительного так и не демонстрируют.

Этим и плох Plextor S3C. В отличие от S2C более новая модель оказалась не только гораздо менее выносливой, но и гораздо менее предсказуемой.

Нежелание Plextor S3C сообщать о себе в S.M.A.R.T. какие-либо подробности приводит к тому, что интересные для анализа данные можно почерпнуть лишь из переменной AD (Average Program/Erase Count), где сохраняется число перезаписей ячеек флеш-памяти.

К концу жизненного цикла S3C установленная в нём планарная TLC NAND перенесла всего лишь 818 циклов перезаписи, что однозначно указывает на крайне низкую надёжность 14-нм памяти производства SK Hynix. В качестве иллюстрации можно напомнить, что аналогичная память, но выпущенная по 16-нм технологии, в составе накопителя Plextor S2C смогла продемонстрировать втрое более высокий ресурс.

Весь наш опыт общения с накопителями, построенными на флеш-памяти SK Hynix, однозначно указывает на то, что качество полупроводниковой продукции этого производителя заметно ниже, чем у конкурентов. Основываясь на данном наблюдении, мы бы рекомендовали стараться не приобретать SSD, в основе которых используется память SK Hynix, особенно если речь идёт о планарной памяти с трёхбитовыми ячейками.


НАДЁЖНОСТЬ SSD: РЕЗУЛЬТАТЫ РЕСУРСНЫХ ИСПЫТАНИЙ. ЧАСТЬ 2


НАДЁЖНОСТЬ SSD: РЕЗУЛЬТАТЫ РЕСУРСНЫХ ИСПЫТАНИЙ. ЧАСТЬ 4

Категория: Накопители | Просмотров: 879 | Добавил: me4 | Теги: tlc nand, накопитель, samsung 850 pro, techreport, plextor m7v, samsung 850 evo, samsung 750 evo, ssd, ocz trion 150
Всего комментариев: 0
avatar

Вход на сайт

Поиск

Календарь

«  Ноябрь 2017  »
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
27282930

Архив записей

Друзья сайта